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Introduction

The main goal of this internship was to formalize some results of the paper ”Weil Representation
associated to finite fields” by P.Gérardin.

The first section of this report introduces some addenda to mathlib (or other formulations of
existing results) that are mandatory to formalize the paper. Those results are about finite group
theory, direct sums and tensor products and monoid algebra theory.
The second section aims to add results about the induced representation by the center of a finite
group and to provides the formula for its character.
The third section corresponds to some parts of the paper : definition of Heisenberg’s group over
vector spaces,...
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Chapter 1

Addenda to mathlib

This chapter introduces results that weren’t in mathlib (or that were in it but needed reformu-
lation to stuck to our situation) and that are mandatory for our goal.

1.1 Group theory
In this section, we fix 𝐺 group and 𝐻 a commutative sugroup of 𝐺. We denote by 𝒵𝐺 the center
of 𝐺 and by 𝑒𝐺 the neutral of 𝐺.

1.1.1 Two lemmas about the center of a group
Proposition 1. If ℎ is an element of the center of 𝐺, it commutes with every element of 𝐺.

Proof. Trivial, just a reformulation in terms of type instead of memebership, useful for the
𝐿𝐸𝐴𝑁 part.

Proposition 2. Let ℎ ∈ 𝒵𝐺 such that ℎ = 𝑎𝑏 for some (𝑎, 𝑏) ∈ 𝐺2. Then, we also have ℎ = 𝑏𝑎.

Proof. Suppose ℎ = 𝑎𝑏. Then 𝑎 = ℎ𝑏−1 = 𝑏−1ℎ because ℎ ∈ 𝒵𝐺. Thus 𝑏𝑎 = ℎ.

1.1.2 Quotient of a group by its center
Definition 3 (Representatives system). We define the system of representatives of 𝐺/𝒵𝐺 by
picking up exactly one element in every classes. We denote it by 𝒮𝐺/𝒵𝐺

from now on and denote
by 𝐶𝑠 the classe of 𝑠.

Proof. To do that in 𝐿𝐸𝐴𝑁 , we take the image of 𝐺 by the map 𝐺 → 𝐺/𝒵𝐺 → 𝐺.

Proposition 4. If 𝐺 is finite, then the system of representatives of 𝐺/𝒵𝐺 is finite too.

Proof. trivial

Proposition 5. Given 𝑔 and 𝑔′ in the set of representatives of 𝐺/𝒵𝐺, if 𝑔 ≠ 𝑔′ then the classes
of 𝑔 and 𝑔′ are disjoint.

Proof. Suppose that the classes aren’t disjoints. Then there exists 𝑦 such that 𝑦 ∼ 𝑔 and 𝑦 ∼ 𝑔′.
Thus 𝑔 ∼ 𝑔′ and their classes are equal. But 𝑔 and 𝑔′ belongs to the set of representatives. Thus
𝑔 = 𝑔′.
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Proposition 6. We have ⋃
𝑠∈𝒮𝐺/𝒵𝐺

𝐶𝑠 = 𝐺.

Proof. If 𝑥 is in the union, in particular it belongs to 𝐺. Let now 𝑔 be an element of 𝐺 and let
show that it belongs to one of the classes. We apply the map defines in 3 to 𝑔 and check that 𝑔
belongs to the class of this element.

Proposition 7. We have a bijection between 𝒮𝐺/𝒵𝐺
and { ̄𝑔 ∈ 𝐺/𝒵𝐺} given by the map 𝑠 → ̄𝑠.

Proof. We check it is a bijection.

Definition 8. We define a map 𝜑𝐺𝒮 ∶ 𝐺 → 𝒮𝐺/𝒵𝐺
that send every 𝑔 ∈ 𝐺 to its representative.

Proposition 9. For every 𝑔 ∈ 𝐺 and ℎ ∈ ℤ𝐺, we have 𝜑𝐺𝒮(𝑔ℎ) = 𝜑𝐺𝒮(𝑔).
Proof. By definition 𝑔 ∗ ℎ belongs to the orbit of 𝑔, thus they have the same representative.

Definition 10. We define a map 𝜓𝐺𝒵𝐺
∶ 𝐺 → 𝒵𝐺 that send every 𝑔 ∈ 𝐺 to the corresponding

ℎ ∈ 𝒵𝐺 such that 𝑔 = 𝑠ℎ where 𝑠 is the representative of 𝑔.

Proposition 11. For every 𝑔 ∈ 𝐺 the following identity holds : 𝑔 = 𝜑𝐺𝒮(𝑔)𝜓𝐺𝒵𝐺
(𝑔).

Proof. By definition of 𝐺/𝒵𝐺.

Proposition 12. For every 𝑔 ∈ 𝐺 the following identity holds : 𝜓𝐺𝒵𝐺
(𝑔) = 𝑔𝜑𝐺𝒮(𝑔)−1.

Proof. Trivial with 11

Proposition 13. For every 𝑔 ∈ 𝒮𝐺/𝒵𝐺
, we have 𝜓𝐺𝒵𝐺

(𝑔) = 𝑒𝐺.

Proof. By definition of the map 𝜓𝐺𝒵𝐺
.

Proposition 14. For every 𝑔 ∈ 𝒮𝐺/𝒵𝐺
, we have 𝜑𝐺𝒮(𝑔) = 𝑔.

Proof. We have 𝑔 = 𝜑𝐺𝒮(𝑔)𝜓𝐺𝒵𝐺
(𝑔) by 11. But 𝜓𝐺𝒵𝐺

(𝑔) = 𝑒𝐺 by 13. Thus we get the result.

Proposition 15. For every 𝑔 ∈ 𝐺 and ℎ ∈ 𝒵𝐺, we have 𝜓𝐺𝒵𝐺
(𝑔ℎ) = ℎ𝜓𝐺𝒵𝐺

(𝑔).

Proof. With 12 we have 𝜓𝐺𝒵𝐺
(𝑔) = 𝑔𝜑𝐺𝒮(𝑔)−1 and 𝜓𝐺𝒵𝐺

(𝑔ℎ) = 𝑔ℎ𝜑𝐺𝒮(𝑔ℎ)−1. But with 9,
we have 𝜑𝐺𝒮(𝑔ℎ) = 𝜑𝐺𝒮(𝑔). Thus, 𝜓𝐺𝒵𝐺

(𝑔ℎ) = 𝑔ℎ𝜑𝐺𝒮(𝑔ℎ)−1 = 𝑔ℎ𝜑𝐺𝒮(𝑔)−1 = ℎ𝑔𝜑𝐺𝒮(𝑔)−1 =
ℎ𝜓𝐺𝒵𝐺

(𝑔) with the first equality.

Definition 16. We define a bijection from 𝐺 to 𝒵𝐺 × 𝒮𝐺/𝒵𝐺
by 𝑔 ↦ (𝜓𝐺𝒵𝐺

(𝑔), 𝜑𝐺𝒮(𝑔)).
Proof. We check the axioms of a bijection.

Definition 17. The bijection 16 empacked as Sigma type instead of cartesian product. Useful
for 𝐿𝐸𝐴𝑁 .

Proposition 18. We have 𝐺 = {𝑔ℎ, 𝑔 ∈ 𝒮𝐺/𝒵𝐺
, ℎ ∈ 𝒵𝐺}.

Proof. The inclusion {𝑔ℎ, 𝑔 ∈ 𝒮𝐺/𝒵𝐺
, ℎ ∈ 𝒵𝐺} is trivial. The converse is given by 12.
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1.2 Direct sums and tensor products
1.2.1 Direct sums
Definition 19. If we have two families (𝛽𝑖)𝑖∈𝐼 and (𝛾𝑖)𝑖∈𝐼 of additive commutative monoids
such that for every 𝑖 ∈ 𝐼 , we have an additive bijection 𝜑𝑖 between 𝛽𝑖 and 𝛾𝑖, then we have an
additive bijection between ⨁

𝑖∈𝐼
𝛽𝑖 and ⨁

𝑖∈𝐼
𝛾𝑖.

Proof. We send ∑
𝑖∈𝐼

𝑥𝑖 on ∑
𝑖∈𝐼

𝜑(𝑥𝑖) and we check that it’s an additive bijection.

Definition 20. Let 𝐴 be a semiring. If we have two families (𝛽𝑖)𝑖∈𝐼 and (𝛾𝑖)𝑖∈𝐼 of additive
commutative monoids such that for every 𝑖 ∈ 𝐼 , 𝛽𝑖 and 𝛾𝑖 are 𝐴−module and we have a 𝐴−linear
bijection 𝜑𝑖 between 𝛽𝑖 and 𝛾𝑖, then we have a 𝐴 linear bijection between ⨁

𝑖∈𝐼
𝛽𝑖 and ⨁

𝑖∈𝐼
𝛾𝑖.

Proof. We take the map defined in 19 which became 𝐴−linear by the new properties of the 𝛽𝑖
and 𝛾𝑖.

Proposition 21. Let 𝐼 be a finite set and (𝛽𝑖)𝑖∈𝐼 a family of additive commutative monoids.
Let Φ be the natural map sending 𝛽𝑖0

to ⨁
𝑖∈𝐼

𝛽𝑖. Then, for every 𝑥 ∶= (𝑥𝑖)𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝛽𝑖 for

all 𝑖 ∈ 𝐼, then for every 𝑗 ∈ 𝐼, the following equality holds : (∑
𝑖∈𝐼

Φ(𝑥𝑖))
𝑗

= 𝑥𝑗.

Proof. We obvioulsy have (∑
𝑖∈𝐼

Φ(𝑥𝑖)) = ∑
𝑖∈𝐼

𝑥𝑖, which immediately gives the result.

1.2.2 Tensor products
Definition 22. Let 𝐴 be ring, 𝐵 an 𝐴−algebra, 𝑀 an 𝐴−module and 𝑁 a 𝐵−module. Then,
Hom𝐵((𝐵 ⊗𝐴 𝑀), 𝑁) ≅ Hom𝐴(𝑀, 𝑁).
Proof. We consider the map sending 𝜑 ∈ Hom𝐵((𝐵⊗𝐴𝑀), 𝑁) to the 𝐴−linear map Φ𝜑 ∶ 𝑀 → 𝑁
defined by Φ𝜑(𝑥) = 𝜑(1 ⊗𝐴 𝑥) for every 𝑥 ∈ 𝑀 . It is injective : if Φ𝜑1

= Φ𝜑2
, then 𝜑1(1 ⊗𝐴 𝑥) =

𝜑2(1 ⊗𝐴 𝑥) for every 𝑥 ∈ 𝑀 . Thus 𝜑1 = 𝜑2 by 𝐵−linearity. It is surjective : let 𝜑 be a
𝐴-linear map from 𝑀 to 𝑁 . Let consider the 𝐵−linear map 𝜓 from 𝐵 ⊗𝐴 𝑀 to 𝑁 define by
𝜓(𝑏 ⊗𝐴 𝑚) = 𝑏𝜑(𝑚). We have then Ψ𝜓(𝑥) = 𝜓(1 ⊗𝐴 𝑥) = 𝜑(𝑥).

1.3 Group algebra
A lot of the results in this section wouldn’t really appear in classical mathematics papers, but
they are needed to ensure that LEAN understand the operations we will do later.

From now on, 𝕂 is a field, 𝐺 is a group and 𝐻 is a subgroup of 𝐺. We define 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑍𝐺 as
the center of 𝐺.
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1.3.1 Setting up operations, coercions and instances in LEAN
Definition 23. Given 𝕂 a field, 𝐺 a group and 𝐻 a subgroup of 𝐺, we have a trivial ring
homomorphism 𝜑𝑘𝐻𝑘𝐺 from 𝕂[𝐻] to 𝕂[𝐺].
Proof. Trivial.

Proposition 24. The map defined in 23 is injective.

Proof. Trivial.

Proposition 25. We have an equality between ℎ ∈ 𝐻 seen as an element of 𝕂[𝐻] and ℎ (seen
as an element of 𝐺) seens as an element of 𝕂[𝐺].
Proof. Some LEAN stuff.

Proposition 26. The map defined in 23 is 𝑘 linear.

Proof. Trivial.

Definition 27. We define a coercion from elements of 𝕂[𝐻] to 𝕂[𝐺] by the map defined in 23.

Proof. Some LEAN stuff.

Definition 28. We define a coercion from sets of elements of 𝕂[𝐻] to sets of elements of 𝕂[𝐺]
by the map defined in 23.

Proof. Some LEAN stuff.

Definition 29. We define a multiplication between elements of 𝕂[𝐻] and elements of 𝕂[𝐺] by
𝑘𝐻 ∗ 𝑘𝐺 = 𝜑𝑘𝐻𝑘𝐺(𝑘𝐻) × 𝑘𝐺.

Proof. Some LEAN stuff.

Proposition 30. 𝕂[𝐺] is a 𝕂[𝒵𝐺] algebra.

Proof. We check the axiom of an algebra.

Proposition 31. If there exists a morphism from 𝐻 to 𝒵𝐺, then 𝕂[𝐺] is a 𝕂[𝐻] algebra.

Proof. We check the axiom of an algebra with the action of 𝕂[𝐻] on 𝕂[𝐺] given by the morphism.

Proposition 32. Let 𝑥 ∈ 𝕂[𝒵𝐺] and 𝑔 ∈ 𝐺. Then 𝑔 × 𝑥 = 𝑥 × 𝑔.

Proof. We have 𝑔 × 𝑥 = 𝑔 × ∑
ℎ∈𝒵𝑔

𝑎ℎℎ = ∑
ℎ∈𝒵𝑔

𝑎ℎ𝑔ℎ = ∑
ℎ∈𝒵𝑔

𝑎ℎℎ𝑔 = ( ∑
ℎ∈𝒵𝑔

𝑎ℎ𝑔ℎ) × 𝑔.

Definition 33. 𝕂[𝒵𝐺] defines a 𝕂[𝐺] submodule.

Proof. We check the axioms.

Definition 34. We define the multiplciation of elements 𝑔 ∈ 𝐺 and 𝑘𝐻 ∈ 𝕂[𝒵𝐺] in 𝕂[𝐺] by
𝑔 × 𝑘𝐻 = 𝑔 × 𝜑𝑘𝐻𝑘𝐺

Proof. Some LEAN stuff.
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Definition 35. We define the multiplciation of elements 𝑔 ∈ 𝐺 and 𝑘𝐺 ∈ 𝕂[𝐺] in 𝕂[𝐺] by 𝑔×𝑘𝐺.

Proof. Some LEAN stuff.

Proposition 36. Elements of 𝐺 are distributive over 𝕂[𝒵𝐺]
Proof. Trivial, LEAN stuff.

1.3.2 Splitting of a group algebra as a direct sum
We use the notation of the section 1 concerning 𝐺/𝒵𝐺 The main goal of this part is to formalize
the following result : 𝕂[𝐺] ≅ ⨁

𝑔∈𝒮𝐺/𝒵𝐺

𝑔𝕂[𝒵𝐺].

Definition 37. Let 𝑔 ∈ 𝐺 be fixed. The morphism 𝜑𝑔 ∶ 𝒵𝐺 → 𝐺 defined by 𝜑𝐺(𝑥) = 𝑔𝑥 induced
a 𝕂-linear map Γ𝑔 from 𝕂[𝒵𝐺] to 𝕂[𝐺].
Proof. Trivial.

Proposition 38. The map Γ𝑔 defined in 37 is injective.

Proof. Trivial.

Proposition 39. For all 𝑥 ∈ 𝕂[𝒵[𝐺]], we have Γ𝑔(𝑥) = 𝑔 × 𝑥
Proof. LEAN stuff to setup a simp lemma.

Definition 40. We define the set Ω𝑔 to be the image of 𝕂[𝒵𝐺] by Γ𝐺.

Proof. Nothing useful mathematically, it’s just simpler for translating LEAN stuff.

Definition 41. The map Γ𝑔 defines a 𝑘-linear bijection between Ω𝑔 and 𝕂[𝒵𝐺].

Proof. It’s injective like we saw before, and 𝑔−1 × 𝑥 is a preimage for 𝑥.

We will now put some structure on Ω𝑔 to makes it understand by LEAN as a 𝕂[𝒵𝐺] module.

Definition 42. We define a multiplication between 𝑥 ∈ 𝕂[𝒵𝐺] and 𝑦 ∈ Ω𝑔 by 𝑥 × 𝑦.

Proof. LEAN stuff.

Definition 43. The multiplication defined in 42 induced an action of 𝕂[𝒵𝐺] on Ω𝑔.

Proof. We check the axioms.

Proposition 44. The action defined in 43 is indeed distributive.

Proof. We check the axioms.

Proposition 45. Ω𝑔 is a 𝕂[𝒵𝐺] module for the action defined in 43.

Proof. We check the axioms.

Definition 46. The bijection defined in 41 is indeed a 𝕂[𝒵𝐺]-linear map.

Proof. We check the linearity.
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Proposition 47. Elements of 𝒮𝐺/𝒵𝐺
seen as elements of 𝕂[𝐺] defined a basis of 𝕂[𝐺] as a 𝕂[𝒵𝐺]

algebra.

Proof. We show the independence of the family and then that it generates the whole algebra.
We suppose that there exists a family (𝑎𝑖)𝑖∈𝒮𝐺/𝒵𝐺

of elements of 𝕂[𝒵𝐺] such that

∑
𝑖∈𝒮𝐺/𝒵𝐺

𝑎𝑖𝑔𝑖 = 0

Using the fact that the family (ℎ)ℎ∈𝒵𝐺
seen as a family of elements of 𝕂[𝒵𝐺] is indeed a basis of

𝕂[𝒵𝐺] as a 𝕂 vector space we get :

∑
𝑖∈𝒮𝐺/𝒵𝐺

( ∑
ℎ∈𝒵𝐺

𝑎𝑖ℎℎ) 𝑔𝑖 = 0

where the 𝑎𝑖ℎ are elements of 𝕂. Those sums are finite, and moreover, the family (𝑖ℎ)(𝑖,ℎ)∈𝒮𝐺/𝒵𝐺 ×𝒵𝐺
is a partition of 𝐺.
Thus, we get :

∑
𝑖∈𝒮𝐺/𝒵𝐺

( ∑
ℎ∈𝒵𝐺

𝑎𝑖ℎℎ) 𝑔𝑖 = ∑
𝑖∈𝒮𝐺/𝒵𝐺

∑
ℎ∈𝒵𝐺

𝑎𝑖ℎ𝑔𝑖ℎ

= ∑
𝑔∈𝐺

𝑎𝑔𝑔

which is equal to 0. But (𝑔)𝑔∈𝐺 seen as a family of elements of 𝕂[𝐺] is a basis of 𝕂[𝐺] as a 𝕂
vector space. Finally, ∀𝑔 ∈ 𝐺, 𝑎𝑔 = 0 and the family is independent.

Let shows the family generates the whole algebra. Let 𝑥 ∈ 𝕂[𝐺]. Using the natural basis 𝐺
of 𝕂[𝐺] and that (𝑖ℎ)(𝑖,ℎ)∈𝒮𝐺/𝒵𝐺 ×𝒵𝐺

is a partition of 𝐺, we get :

𝑥 = ∑
𝑔∈𝐺

𝑎𝑔𝑔

= ∑
𝑖∈𝒮𝐺/𝒵𝐺

∑
ℎ∈𝒵𝐺

𝑎𝑖ℎ𝑖ℎ

= ∑
𝑖∈𝒮𝐺/𝒵𝐺

⎛⎜⎜⎜⎜⎜⎜
⎝

∑
ℎ∈𝒵𝐺

𝑎𝑖ℎℎ
⏟⏟⏟⏟⏟

∈𝕂[𝒵𝐺]

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑖

So it generates the whole algebra and finally we get a basis.

Definition 48. We define a map on 𝒮𝐺/𝒵𝐺
that associates to every elements 𝑔 ∈ 𝒮𝐺/𝒵𝐺

the
natural element of ⨁

𝑠∈𝒮𝐺/𝒵𝐺

𝕂[𝒵𝐺], that is 1 of 𝕂[𝒵𝐺] on the 𝑔−th component and 0 elsewhere.

Definition 49. We construct a 𝕂[𝒵𝐺]-linear map on ⨁
𝑔∈𝒮𝐺/𝒵𝐺

𝕂[𝒵𝐺] by using the images of the

element of the basis 47 by the map 48.
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Definition 50. The map defined in 49 is in fact an isomorphism.

Proof. We give an explicit inverse which is (𝑥1, … , 𝑥𝑔) ↦ ∑
𝑔∈𝒮𝐺/𝒵𝐺

𝑥𝑔𝑔.

Definition 51. We have an isomorphism 𝕂[𝐺] ≅ ⨁
𝑔∈𝒮𝐺/𝒵𝐺

𝑔𝕂[𝒵𝐺] which is 𝕂[𝒵𝐺]-linear.

Proof. We compose the maps defined in 50 and 46 and use the bijection 20.

1.4 Representation theory
The main goals of this part is to build the representation induced by the center 𝒵𝐺 of a group
𝐺 and its basic properties, and to formalize its character.

From now on, 𝕂 is a field and 𝐺 is a group. We denote by 𝒵𝐺 its center. 𝑊 is a 𝕂−vector
space. Finally, 𝜃 is a representation of 𝒵𝐺 in 𝑊 .

1.4.1 Building the induced representation
Definition 52 (Induced representation as module). Given 𝐺 a group, 𝕂 a field, 𝑊 a 𝑘 vector
space and 𝜃 a representation of 𝒵𝐺 on 𝑊 , we define the tensor product 𝑉 ∶= 𝕂[𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃,
where 𝑉𝜃 is the 𝕂[𝒵𝐺] module associated to 𝜃.

Proposition 53. The 𝑉 defined in 52 is an additive commutative monoid.

Proof. It comes from the fact that 𝕂[𝐺] and 𝕂[𝒵𝐺] are additive commutative monoids.

Proposition 54. The 𝑉 defined in 52 is a 𝕂[𝐺] module.

Proof. We do mettre la preuve.

Proposition 55. The 𝑉 defined in 52 is a 𝕂[𝒵𝐺] module.

Proof. We do mettre la preuve.

Definition 56 (Induced representation by the center). The 𝑉 defined in 52 defined a represen-
tation of 𝐺 called the induced representation by 𝒵𝐺.

Definition 57 (Subrepresentation of the induced). We define the subrepresentation of 56 by
𝕂[𝒵𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃, where 𝑉𝜃 is the 𝕂[𝒵𝐺] module associated to 𝜃.

Proposition 58. The tensor product defined in 57 is an additive commutative monoid.

Proof. It comes from general properties of tensor products.

Proposition 59. The tensor product defined in 57 is a 𝕂[𝒵𝐺] module.

Proof. It comes from general properties of tensor products.

Proposition 60. The induced representation defined in 56 is a 𝕂[𝒵𝐺] module.

Proof. It comes from general properties of tensor products.

Proposition 61. We have an isomorphism between 𝕂[𝒵𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃 and 𝑉𝜃.
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Proof. It comes from a special case of a theorem à ajouter.

Proposition 62 (Coercion). We have a coercion from element of type 𝕂[𝒵𝐺]⊗𝕂[𝒵𝐺] 𝑉𝜃 to element
of type 𝕂[𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃.

Proof. It comes from 23.

Proposition 63 (Coercion set). We have a coercion from element of type 𝑆𝑒𝑡 ∶ 𝕂[𝒵𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃
to element of type 𝑆𝑒𝑡 ∶ 𝕂[𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃.

Proof. It comes from 23.

Proposition 64 (𝑉𝜃 as submodule). The set of elements of 𝑉𝜃 defines a 𝕂[𝒵𝐺]-submodule of
itself.

Proof. Trivial.

Proposition 65 (𝑉𝜃 as submodule isomorphic to 𝑉𝜃). The submodule defined in 64 is isomorphic
to 𝑉𝜃.

Proof. Trivial.

Proposition 66 (Subrepresentation of the induced one as submodule). The image of the map
sending 33 and 65 to their tensor product defines a 𝕂[𝒵𝐺]-submodule of 𝕂[𝐺] ⊗𝕜[𝒵𝐺] 𝑉𝜃.

Proof. Trivial.

Proposition 67 (Image of 𝑉𝜃 as submodule). The image of 𝑉𝜃 by 61 defines a 𝕂[𝒵𝐺]-submodule
of 𝕂[𝐺] ⊗𝕜[𝒵𝐺] 𝑉𝜃, ie 𝑉𝜃 is a subrepresentation of the induced.

Proof. Compute the axioms.

Proposition 68 (Induced reprensentation property). Let 𝐸 be a 𝕂[𝐺] module. We have an
isomorphism 𝐻𝑜𝑚𝕂[𝐺] (𝕂[𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃, 𝐸) ≃ 𝐻𝑜𝑚𝕂[𝒵𝐺] (𝕂[𝒵𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃, 𝐸).

Proof. We use ?? two times.

1.4.2 Character of the induced representation
Definition 69 (Central function). Given 𝐺 a group, a function 𝑓 over 𝐺 is called central if it is
constant on the conjugacy classes of 𝐺 : 𝑓(𝑔−1𝑥𝑔) = 𝑓(𝑥) for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐺.

Definition 70 (Induced central function). If 𝐻 is a subgroup of 𝐺 a finite group, and if 𝑓 is a
function over 𝐻, we define a central function 𝑓𝐺 over 𝐺 (called the induced central function on
𝑓) by the formula :

𝑓𝐺(𝑥) = 1
Card(𝐻) ∑

𝑔∈𝐺 ∧ 𝑔−1𝑥𝑔∈𝐻
𝑓(𝑔−1𝑥𝑔)

Proof. We check the axiom by reordering the sum with the bijection 𝑥 ↦ 𝑔−1𝑥.

Definition 71 (Character as central function). A character is of course a central function over
𝐺. We empacked this definition in Lean.

Proof. Trivial.
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Proposition 72 (Induced representation is semisimple). If |𝐺| ∤ 𝐶ℎ𝑎𝑟(𝑘), then the module
defined in 52 is semisimple.

Proof. Consequences of .

Definition 73. We define the 𝕂[𝒵𝐺] module 𝑊𝑔 ∶= 𝑔𝕂[𝒵𝐺] ⊗𝕂[𝒵𝐺] 𝑉𝜃 for 𝑔 ∈ 𝒮𝐺/𝒵𝐺
.

Definition 74. We have an isomorphism between 𝕂[𝐺]⊗𝕂[𝒵𝐺]𝑉𝜃 and ⨁
𝑔∈𝒮𝐺/𝒵𝐺

𝑊𝑔 = ⨁
𝑔∈𝒮𝐺/𝒵𝐺

𝑔𝕂[𝒵𝐺]⊗𝕂[𝒵𝐺]

𝑉𝜃.

Proof. We get the resultat with the isomorphism 𝕂[𝐺] ≅ ⊗𝕂[𝒵𝐺]𝑔𝕂[𝒵𝐺] defined in ??.
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Chapter 2

Duality and conventions

The article chooses to have a non canonical identification between 𝑉 and its bidual : < 𝑥, 𝑦 >=
− < 𝑦, 𝑥 >. Some properties only rely on this identification (see 86 for an example).

2.1 Setting up the conventions
Definition 75 (Bilinear form on 𝑉 ∗∗ × 𝑉 ). We define a bilinear form on 𝑉 ∗∗ × 𝑉 by (𝑥, 𝑦) ↦
−𝑦(𝑥).
Proof. We check the bilinearity.

We set up also a simp lemma for the evaluation of the bilinear form.
Definition 76 (Map from 𝑉 to 𝑉 ∗∗). We define a linear map from 𝑉 to 𝑉 ∗∗ by 𝑣 ↦ (𝜑 ↦ −𝜑(𝑣)).
Proof. We check the linearity of the map.

We set up also a simp lemma for the evaluation of the map.
Proposition 77 (Bijective map from 𝑉 to 𝑉 ∗∗).

If 𝑉 is reflexive, then the linear map defined in 76 is a bijective linear map from 𝑉 to 𝑉 ∗∗.
Proof. We check it’s a bijective map by giving the explicit inverse map.

We set up also a simp lemma for the evaluation of the bijective map.

2.2 Some results about the commutator bilinear form
Definition 78 (Commutator form). If 𝑉 is reflexive, the map ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ↦ 𝑦1(𝑥2) −
𝑦2(𝑥1) is a bilinear form on 𝑉 × 𝑉 ∗.

Proof. We check the bilinearity.

Proposition 79 (Nondegeneracy).
The bilinear form defined in 78 is a nondegeneracy bilinear form.

Proof. Suppose it is degeneracy. Then there exists ℎ ∶= (𝑥, 𝑦) ∈ 𝑉 × 𝑉 ∗ such that ℎ ≠ 0 and
𝑦(𝑥′) − 𝑦′(𝑥) = 0 for all (𝑥′, 𝑦′) ∈ 𝑉 × 𝑉 ∗. In particular, for 𝑦′ = 0, 𝑦(𝑥′) = 0 for all 𝑥′, so 𝑦 = 0.
Then, for 𝑥′ = 0, 𝑦′(𝑥) = 0 for all 𝑦′, so 𝑥 = 0. Thus ℎ = 0. Contradiction.
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Chapter 3

Heisenberg’s group

3.1 Construction
Definition 80 (Structure of Heisenberg). Given 𝑘 a field, 𝑉 a 𝑘 vector space and 𝑉 ∗ its dual
vector space, we define the Heisenberg set associated to 𝑉 by ℋ(𝑉 ) ∶= {(𝑧, 𝑥, 𝑦) ∈ 𝑘 × 𝑉 × 𝑉 ∗}.

Proposition 81 (Trivial bijection). ℋ(𝑉 ) is in bijection with 𝑘 × 𝑉 × 𝑉 ∗.

Proof. Trivial.

Definition 82 (Multiplication on Heisenberg).
We define an internal law on Heisenberg by the following formula : (𝑧1, 𝑥1, 𝑦1) ∗ (𝑧2, 𝑥2, 𝑦2) =

(𝑧1 + 𝑧2 + 𝑦1(𝑥2), 𝑥1 + 𝑥2, 𝑦1 + 𝑦2) for every (𝑧1, 𝑥1, 𝑦1), (𝑧2, 𝑥2, 𝑦2) ∈ ℋ(𝑉 ).
Definition 83 (Inverse of an element of Heisenberg).

The inverse of (𝑧, 𝑥, 𝑦) ∈ ℋ(𝑉 ) is given by the formula (−𝑧 − 𝑦(−𝑥), −𝑥, −𝑦).
Proof. Compute ℎ ∗ ℎ−1.

Proposition 84 (Heisenberg’s group). Heisenberg is a group for the the internal law defined in
82.

Proof. We check the axioms of a group.

Definition 85 (Bijectivity with ℋ(𝑉 ∗)).
Under our identification of the bidual, the map Φ ∶ (𝑧, 𝑥, 𝑦) ↦ (𝑧, 𝑦, 𝑥) defines a bijection

between ℋ(𝑉 ) and ℋ(𝑉 ∗).
Proof. Compute Φ ∘ Φ−1 and Φ−1 ∘ Φ.

Definition 86 (Antiisomorphic with ℋ(𝑉 ∗)).
Under our identification of the bidual, the map define in 85 is a group antiisomorphism from

ℋ(𝑉 ) to ℋ(𝑉 ∗).
Proof. Compute that Φ(ℎ1 ∗ ℎ2) = Φ(ℎ2) ∗ Φ(ℎ1).
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3.2 Center
Definition 87 (Center of Heisenberg).

We define the center of ℋ(𝑉 ) by the set 𝒵ℋ(𝑉 ) ∶= {(𝑧, 0, 0) ∈ ℋ(𝑉 ), 𝑧 ∈ 𝑘}
Proposition 88 (The center is a subgroup).

The center of Heisenberg 𝒵ℋ(𝑉 ) is a subgroup of ℋ(𝑉 ).
Proof. We check the axioms and compute.

Proposition 89 (Caracterisation of the center).
The set define in 87 is indeed the center of ℋ(𝑉 ).

Proof. By double inclusion. Reciprocity use the fact that the quadratic form 78 is a non degen-
eracy one (see 79 for a proof).

3.3 Commutator and nilpotency
Proposition 90 (Commutator).

Let 𝐻1 ∶= (𝑧1, 𝑥1, 𝑦1) and 𝐻2 ∶= (𝑧2, 𝑥2, 𝑦2) be two elements of ℋ(𝑉 ). The commutator of
[𝐻1, 𝐻2] is (𝑦1(𝑥2) − 𝑦2(𝑥1), 0, 0).
Proof. We compute 𝐻1 ∗ 𝐻2 ∗ 𝐻−1

1 ∗ 𝐻−1
2 .

Proposition 91 (Commutator isn’t trivial).
If 𝑉 isn’t trivial, the subgroup of ℋ(𝑉 ) generates by commutators isn’t trivial too.

Proof. By contradiction. If it was trivial, every element of ℋ(𝑉 ) would belong to its center.
Because 𝑉 isn’t trivial, there exists 𝑥 ∈ 𝑉 such that 𝑥 ≠ 0. Thus, (0, 𝑥, 0) would belong to the
center. But because of the definition of the center, 𝑥 = 0. We get a contradiction.

Proposition 92 (Caracterisation of the commutator).
If ℎ ∶= (𝑧, 𝑥, 𝑦) belongs to the commutator subgroup, then 𝑥 = 0 and 𝑦 = 0.

Proof. We compute.

Theorem 93 (Nilpotency of Heisenberg’s group).
If 𝑉 isn’t trivial, ℋ(𝑉 ) is a two step nilpotent group.

Proof. We have to show that the commutator isn’t trivial and that [[ℋ(𝑉 ), ℋ(𝑉 )], ℋ(𝑉 )] is
trivial. The first point is done in 91. The second is some computation, using 92.

3.4 Short exact sequence
Definition 94 (Homomorphism from 𝑘 to ℋ(𝑉 )).

The map 𝜑 ∶ 𝑧 ↦ (𝑧, 0, 0) defines a homomorphism from (𝑘, +) to ℋ(𝑉 ).
Proof. Trivial.

Proposition 95 (Injectivity of 𝜑).
The homomorphism defined in 94 is injective.

Proof. We suppose 𝜑(𝑥) = 𝜑(𝑦) and we show 𝑥 = 𝑦. No difficulties.
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Definition 96 (Homomorphism from ℋ(𝑉 ) to 𝑉 × 𝑉 ∗).
The map 𝜓 ∶ (𝑧, 𝑥, 𝑦) ↦ (𝑥, 𝑦) defines a homomorphism from ℋ(𝑉 ) to 𝑉 × 𝑉 ∗.

Proof. Trivial.

Proposition 97 (Surjectivity of 𝜓).
The homomorphism defined in 96 is surjective.

Proof. Trivial.

Proposition 98 (Short exact sequence).

We have a short exact sequence 0 → 𝑘
𝜑
→ ℋ(𝑉 )

𝜓
→ 𝑉 × 𝑉 ∗ → 0.

Proof. We check that the kernel of 𝜓 is exactly the image of 𝜑.

Definition 99 (𝜓−1(𝑉 )).
The pullback 𝑉 × {0} by 𝜓 defines a subgroup of ℋ(𝑉 ).

Proof. We check that it is a subgroup.

Proposition 100 (Pullback is commutative).
The subgroup defined in 99 is commutative.

Proof. Check that ℎ1 ∗ ℎ2 = ℎ2 ∗ ℎ1.

Proposition 101 (Pullback is normal).
The subgroup defined in 99 is a normal subgroup of Heisenberg.

Proof. Check that 𝑔 ∗ ℎ ∗ 𝑔−1 ∈ 𝜓−1(𝑉 ) for every 𝑔 ∈ ℋ(𝑉 ) and ℎ ∈ 𝜓−1(𝑉 ).
Proposition 102 (Maximality of the pullback).

The subgroup defined in 99 is maximal among the commutative subgroups of ℋ(𝑉 ).
Proof. By contradiction. If it’s not, then there exists 𝑄 a commutative subgroup such that
𝜓−1(𝑉 ) ⊂ 𝑄 and 𝑄 ≠ 𝜓−1(𝑉 ). Let 𝑞 ∶= (𝑧, 𝑥, 𝑦) ∈ 𝑄\𝜓−1(𝑉 ). In particular, we have for every
ℎ = (𝑎, 𝑏, 0) ∈ 𝜓−1(𝑉 ) that 𝑥 ∗ ℎ = ℎ ∗ 𝑥. We compute this equality and find out that for every
𝑏 ∈ 𝑉 , 𝑦(𝑏) = 0. Thus 𝑦 = 0 and 𝑞 ∈ 𝜓−1(𝑉 ). Contradiction.

Definition 103 (𝜓−1(𝑉 )).
The pullback of {0} × 𝑉 ∗ by 𝜓 defines a subgroup of ℋ(𝑉 ).

Proof. We check the axioms.

Proposition 104 (Commutativity of the pullback).
The subgroup defined in 103 is commutative.

Proof. Check that ℎ1 ∗ ℎ2 = ℎ2 ∗ ℎ1.

Proposition 105 (Pullback is normal).
The subgroup defined in 103 is ai normal subgroup of Heisenberg. .

Proof. Check that 𝑔 ∗ ℎ ∗ 𝑔−1 ∈ 𝜓−1(𝑉 ∗) for every 𝑔 ∈ ℋ(𝑉 ) and ℎ ∈ 𝜓−1(𝑉 ∗).
Proposition 106 (Maximality of the pullback).

The subgroup defined in 103 is maximal among the commutative subgroups of ℋ(𝑉 ).
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Proof. By contradiction. If it’s not, then there exists 𝑄 a commutative subgroup such that
𝜓−1(𝑉 ∗) ⊂ 𝑄 and 𝑄 ≠ 𝜓−1(𝑉 ∗). Let 𝑞 ∶= (𝑧, 𝑥, 𝑦) ∈ 𝑄\𝜓−1(𝑉 ∗). In particular, we have for every
ℎ = (𝑎, 0, 𝑏) ∈ 𝜓−1(𝑉 ∗) that 𝑥 ∗ ℎ = ℎ ∗ 𝑥. We compute this equality and find out that for every
𝑏 ∈ 𝑉 ∗, 𝑏(𝑥) = 0. Thus 𝑥 = 0 and 𝑞 ∈ 𝜓−1(𝑉 ∗). Contradiction.

3.5 Specifities of the case 𝑘 = 𝔽𝑞

Proposition 107 (Cardinality). If 𝑘 is a finite field, then |ℋ(𝑉 )| = |𝑘| × |𝑉 |2.

Proof. With 81 we know ℋ(𝑉 ) ≅ 𝑘 × 𝑉 × 𝑉 ∗. Because 𝑉 is finite dimensional, |𝑉 | = |𝑉 ∗|, thus
we get the result.

Proposition 108 (Cardinality of the center). If 𝑘 is a finite field, then |𝒵ℋ(𝑉 )| = |𝑘|.
Proof. Trivial, the center being isomorphic to 𝑘.

Theorem 109 (Index of the center).
If 𝑘 is a finite field, then [ℋ(𝑉 ) ∶ 𝒵ℋ(𝑉 )] = |𝑉 |2.

Proof. We use the fact that [ℋ(𝑉 ) ∶ 𝒵ℋ(𝑉 )] = |ℋ(𝑉 )|
|𝒵ℋ(𝑉 )| . Given that |ℋ(𝑉 )| = |𝑘| × |𝑉 |2 (because

of 107) and |𝒵ℋ(𝑉 )| = |𝑘| (because of 108), we get the result.
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