Extra definitions on Option #
This file defines more operations involving Option α. Lemmas about them are located in other
files under Mathlib.Data.Option.
Other basic operations on Option are defined in the core library.
def
Option.traverse
{F : Type u → Type v}
[Applicative F]
{α : Type u_1}
{β : Type u}
(f : α → F β)
:
Traverse an object of Option α with a function f : α → F β for an applicative F.
Equations
Instances For
An elimination principle for Option. It is a nondependent version of Option.rec.
Equations
- Option.elim' b f (some a) = f a
- Option.elim' b f none = b
Instances For
@[simp]
@[simp]
@[simp]
instance
Option.merge_isCommutative
{α : Type u_1}
(f : α → α → α)
[Std.Commutative f]
:
Std.Commutative (merge f)
instance
Option.merge_isAssociative
{α : Type u_1}
(f : α → α → α)
[Std.Associative f]
:
Std.Associative (merge f)
@[deprecated Option.merge_isCommutative (since := "2025-04-04")]
theorem
Option.liftOrGet_isCommutative
{α : Type u_1}
(f : α → α → α)
[Std.Commutative f]
:
Std.Commutative (merge f)
Alias of Option.merge_isCommutative.
@[deprecated Option.merge_isAssociative (since := "2025-04-04")]
theorem
Option.liftOrGet_isAssociative
{α : Type u_1}
(f : α → α → α)
[Std.Associative f]
:
Std.Associative (merge f)
Alias of Option.merge_isAssociative.
@[deprecated Option.merge_isIdempotent (since := "2025-04-04")]
Alias of Option.merge_isIdempotent.
@[deprecated Option.merge_isId (since := "2025-04-04")]
Alias of Option.merge_isId.