Addenda to the direct sums and tensor products in mathlib #
This file adds some lemmas about direct sums and tensor products in mathlib.
Contents #
DirectSum_equiv_linearmap
: ifβ ≃ₗ[A] γ
then DirectSum ι β ≃ₗ[A] DirectSum ι γDirectSum_eq_sum_direct
: Given a familyx : (i : ι) → β i
of indexed types on a fintypeι
, we have the identity :(∑ (i : ι), (DirectSum.of β i) (x i)) j = x j
.iso_hom_tens
: isomorphism between $Hom_B(B⊗_AM,N)$ and $Hom_A(M,N)$ for $B$ anA
-algebra,M
anA
-module andN
aB
-module.
def
DirectSum_equiv
(ι : Type v)
(β γ : ι → Type w)
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → AddCommMonoid (γ i)]
(h : (i : ι) → β i ≃+ γ i)
:
If two types β
and γ
are indexed by a same type ι
, then we have an AddEquiv
between
DirectSum i β
and DirectSum i γ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
DirectSum_equiv_linearmap
(A : Type)
[Semiring A]
(ι : Type v)
(β γ : ι → Type w)
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → AddCommMonoid (γ i)]
[(i : ι) → Module A (β i)]
[(i : ι) → Module A (γ i)]
(h : (i : ι) → β i ≃ₗ[A] γ i)
:
DirectSum_equiv
as a k
linear equivalence.
Equations
- DirectSum_equiv_linearmap A ι β γ h = (DirectSum_equiv ι β γ fun (i : ι) => (h i).toAddEquiv).toLinearEquiv ⋯
Instances For
@[simp]
theorem
DirectSum_eq_sum_direct
(ι : Type u_1)
[hi : Fintype ι]
(β : ι → Type w)
[(i : ι) → AddCommMonoid (β i)]
[DecidableEq ι]
(x : (i : ι) → β i)
(j : ι)
:
Given a family x : (i : ι) → β i
of indexed types on a fintype ι
, we have the identity :
(∑ (i : ι), (DirectSum.of β i) (x i)) j = x j
.
noncomputable def
iso_hom_tens
(A : Type u_1)
(M : Type u_2)
(N : Type u_3)
(B : Type u_4)
[CommSemiring A]
[Semiring B]
[Algebra A B]
[AddCommMonoid M]
[Module A M]
[AddCommMonoid N]
[Module A N]
[Module B N]
[IsScalarTower A B N]
:
Isomorphism between $Hom_B(B⊗_AM,N)$ and $Hom_A(M,N)$ for $B$ an A
-algebra, M
an A
-module
and N
a B
-module.
Equations
- One or more equations did not get rendered due to their size.