Documentation

MyProject.Addenda_group_theory

Addenda to the group theory in mathlib #

This file adds some basic results about group theory and more specificially finite group quotiented by their center.

Main results #

We create the set of representatives of G⧸ (Subgroup.center G) and verify the properties that this set is suppose to satisfy. We then introduce two maps G_to_syst and G_to_center that associated to every g : G its representatives and its Subgroup.center G parts.

Contents #

theorem center_mul_comm (G : Type u_2) [inst2 : Group G] (g : G) (h : (Subgroup.center G)) :
h * g = g * h

An element of type Subgroup.center G commutes with every element of type G.

@[simp]
theorem center_mul (G : Type u_2) [inst2 : Group G] (h : (Subgroup.center G)) (a b : G) (h1 : h = a * b) :
h = b * a

simp lemma associated to center_mul_comm.

@[reducible, inline]
abbrev system_of_repr_center.set (G : Type u_2) [inst2 : Group G] :
Set G
Equations
Instances For
    noncomputable instance system_of_repr_center.instFintype_myProject (G : Type u_2) [inst3 : Finite G] :

    A set of representatives of the classes of G⧸ (Subgroup.center G).

    Equations
    instance system_of_repr_center.finite (G : Type u_2) [inst2 : Group G] (h : Finite G) :
    Finite (set G)

    system_of_rep_center_set is finite.

    theorem system_of_repr_center.classes_disjoint (G : Type u_2) [inst2 : Group G] (g g' : G) (hG : g set G) (hG' : g' set G) :

    Union of the classes of elements of system_of_repr_center.set is the whole group.

    system_of_repr_center G is equivalent to the image of the application G → G⧸ (Subgroup.center G).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def system_of_repr_center.G_to_syst (G : Type u_2) [inst2 : Group G] :
      G(set G)

      A function that associates to every element g:G the corresponding representative in system_of_repr_center.set.

      Equations
      Instances For
        @[simp]
        theorem system_of_repr_center.G_to_syst_simp (G : Type u_2) [inst2 : Group G] (g : G) (h : (Subgroup.center G)) :
        G_to_syst G (g * h) = G_to_syst G g

        If h : Subgroup.center G, then G_to_syst G (g*h) = G_to_syst G g for every g:G.

        noncomputable def system_of_repr_center.G_to_center (G : Type u_2) [inst2 : Group G] :
        G(Subgroup.center G)

        A function that associates to every element g:G the corresponding z : Subgroup.center G sucht that Quotient.out ↑g = g * z.

        Equations
        Instances For
          theorem system_of_repr_center.G_to_center_simp (G : Type u_2) [inst2 : Group G] (g : G) :
          g = g.out * (G_to_center G g)

          Decomposition of an element g:G into a product of an element of Subgroup.center G by an element of G.

          theorem system_of_repr_center.G_eq_G_to_center_G_to_syst_simp (G : Type u_2) [inst2 : Group G] (g : G) :
          g = (G_to_syst G g) * (G_to_center G g)

          G_to_center_simp written with G_to_syst and G_to_center.

          theorem system_of_repr_center.G_to_center_to_syst_comm (G : Type u_2) [inst2 : Group G] (g : G) :
          (G_to_center G g) * (G_to_syst G g) = (G_to_syst G g) * (G_to_center G g)

          Commutativity of the product of G_to_center G g and G_to_syst G g for every g : G.

          theorem system_of_repr_center.G_to_center_eq_G_G_to_syst_simp (G : Type u_2) [inst2 : Group G] (g : G) :
          (G_to_center G g) = g * (↑(G_to_syst G g))⁻¹

          G_to_center_to_syst_simp written with G_to_center on the right side of the equality.

          @[simp]
          theorem system_of_repr_center.G_to_center_syst_apply_simp (G : Type u_2) [inst2 : Group G] (g : (set G)) :
          G_to_center G g = 1

          If g : system_of_repr_center.set G then G_to_center G g.1 is equal to the neutral of the group.

          @[simp]
          theorem system_of_repr_center.G_to_syst_simp_id (G : Type u_2) [inst2 : Group G] (g : (set G)) :
          G_to_syst G g = g

          If g : system_of_repr_center.set G then G_to_syst G g is equal to g.

          @[simp]
          theorem system_of_repr_center.G_to_center_mul_simp (G : Type u_2) [inst2 : Group G] (g : G) (h : (Subgroup.center G)) :
          G_to_center G (g * h) = h * G_to_center G g

          For every g:G and h : Subgroup.center G, we have the following identity : G_to_center G (g*h) = h * G_to_center G g.

          theorem system_of_repr_center.G_to_syst_mul (G : Type u_2) [inst2 : Group G] (g : G) (gbar : (set G)) :
          G_to_syst G (g * gbar) = G_to_syst G ((G_to_syst G g) * gbar)
          noncomputable def system_of_repr_center.set_center_iso_G (G : Type u_2) [inst2 : Group G] :
          G (Subgroup.center G) × (set G)

          G is equivalent to the cartesian product of its center and system_of_repr_center.set G.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def system_of_repr_center.set_center_iso_G_sigma (G : Type u_2) [inst2 : Group G] :
            (_ : (Subgroup.center G)) × (set G) G

            system_of_repr_center.set_center_iso_G written for Sigma types instead of cartesian product.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem system_of_repr_center.set_center_eq_G (G : Type u_2) [inst2 : Group G] :
              Set.univ = {x : G | ∃ (g : (set G)) (h : (Subgroup.center G)), g * h = x}

              system_of_repr_center.set_center_iso_G written as sets.

              noncomputable def system_of_repr_center.equiv_perm_fun (G : Type u_2) [inst2 : Group G] (g : G) :
              (set G)(set G)
              Equations
              Instances For
                theorem system_of_repr_center.equiv_perm_fun_apply (G : Type u_2) [inst2 : Group G] (g : G) (gi : (set G)) :
                g * gi = (equiv_perm_fun G g gi) * (G_to_center G (g * gi))
                noncomputable def system_of_repr_center.equiv_perm (G : Type u_2) [inst2 : Group G] (g : G) :
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem system_of_repr_center.equiv_perm_exists (G : Type u_2) [inst2 : Group G] [inst3 : Finite G] (g : G) :
                  ∃ (σ : Equiv.Perm (set G)), ∀ (gbar : (set G)), g * gbar = (σ gbar) * (G_to_center G (g * gbar))