Documentation

MyProject.convention_dual

Convention on the bidual #

This file defines the identification of the bidual as choosen by Paul Gérardin in his paper.

Mains results #

Let kbe a field, V a finite dimensional vector space over k, and Module.Dual k V its dual space. The main results are :

def convention_dual (V : Type u_1) (k : Type u_2) [Field k] [AddCommGroup V] [Module k V] :

The map $(x,y)↦ - y(x)$ is a bilinear form on $V^{**}× V$.

Equations
Instances For
    @[simp]
    theorem convention (V : Type u_1) (k : Type u_2) [Field k] [AddCommGroup V] [Module k V] (v : Module.Dual k V) (φ : Module.Dual k (Module.Dual k V)) :
    ((convention_dual V k) φ) v = -φ v
    def convention_eval (V : Type u_1) (k : Type u_2) [Field k] [AddCommGroup V] [Module k V] :

    The map $V → V^{**}$ satisfying the convention $(x,y)=-y(x)$.

    Equations
    Instances For
      @[simp]
      theorem convention_eval_apply (V : Type u_1) (k : Type u_2) [Field k] [AddCommGroup V] [Module k V] (v : V) (φ : Module.Dual k V) :
      ((convention_eval V k) v) φ = -φ v
      noncomputable def convention_eval_iso (V : Type u_1) (k : Type u_2) [Field k] [AddCommGroup V] [Module k V] [Module.IsReflexive k V] :

      The bijection between a reflexive module and its double dual such that (x,y)=-(y,x), bundled as a LinearEquiv.

      Equations
      Instances For
        @[simp]
        theorem convention_eval_iso_apply (V : Type u_1) (k : Type u_2) [Field k] [AddCommGroup V] [Module k V] [FiniteDimensional k V] (v : V) (φ : Module.Dual k V) :
        ((convention_eval_iso V k) v) φ = -φ v
        noncomputable def form_commutator (V : Type u_1) (k : Type u_2) [Field k] [AddCommGroup V] [Module k V] [Module.IsReflexive k V] :

        The bilinear form over $V × V^*$ that sends $((x_1,y_1),(x_2,y_2)$ to $y_1(x_2)-y_2(x_1)$.

        Equations
        Instances For