Documentation

MyProject.Addenda_representation_theory

Addenda to the representation theory in mathlib #

This file adds some properties about representation theory in mathlib.

Main results #

The goal of this file is to formalize the induced representation by the center of finite groups and and the Frobenius reciprocity. We also aim to formalize the formula of the character of this induced representation.

Contents #

@[reducible, inline]
abbrev Induced_rep_center.tensor (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

Induced representation on G by a representation Representation k (Subgroup.center G) W seen as a tensor product.

Equations
Instances For
    noncomputable instance Induced_rep_center.tensor_add_comm_mon (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

    tensor k G W θ is an AddCommMonoid.

    Equations
    noncomputable instance Induced_rep_center.tensor_module (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :
    Module (MonoidAlgebra k G) (tensor k G W θ)

    tensor k G W θ is a MonoidAlgebra k G module.

    Equations
    noncomputable def Induced_rep_center.as_rep (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

    Induced representation on G by a representation Representation k (Subgroup.center G) W seen as a representation.

    Equations
    Instances For
      def Induced_rep_center.module_sub_rep (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

      Subrepresentation of tensor as module.

      Equations
      Instances For
        noncomputable instance Induced_rep_center.Coe (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :
        CoeOut (module_sub_rep k G W θ) (tensor k G W θ)

        Coercion from module_sub_rep to tensor.

        Equations
        • One or more equations did not get rendered due to their size.
        noncomputable instance Induced_rep_center.module_sub_rep_addcommmon (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

        module_sub_rep is an additive commutative monoid.

        Equations
        noncomputable instance Induced_rep_center.module_sub_rep_module (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

        module_sub_rep is a MonoidAlgebra k (Subgroup.center G) module.

        Equations
        noncomputable def Induced_rep_center.module_sub_rep_iso (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

        The tensor product module_sub_rep is lineary equivalent to θ.asModule (which is a specialization of a more specific theorem that I should implement : a ⨂ₐ M ≃ M)

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable instance Induced_rep_center.tensor_module_sub (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

          tensor k G W θ is a MonoidAlgebra k ↥(Subgroup.center G) module.

          Equations
          noncomputable def Induced_rep_center.subrep_sub_module (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

          θ.asModule is a (MonoidAlgebra k (Subgroup.center G)) submodule over itself.

          Equations
          Instances For
            noncomputable def Induced_rep_center.subrep_sub_module_iso (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

            θ.asModule is isomorphic to itself seen as a submodule.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              noncomputable def Induced_rep_center.is_sub_rep_submodule_iso (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

              TensorProduct (MonoidAlgebra k (Subgroup.center G)) θ.asModule is a (MonoidAlgebra k (Subgroup.center G)) submodule of tensor k G W θ.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                noncomputable def Induced_rep_center.subsubsub (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :

                The image of θ.asModule by module_sub_rep_iso is a submodule of tensor k G W θ, ie θ.asModule is a subrepresentation of the induced representation

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  noncomputable def Induced_rep_center.subrep (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    noncomputable def Induced_rep_center.iso_induced_as_tensor (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) (E : Type u_1) [AddCommMonoid E] [Module (MonoidAlgebra k G) E] [Module (MonoidAlgebra k (Subgroup.center G)) E] [inst6 : IsScalarTower (MonoidAlgebra k (Subgroup.center G)) (MonoidAlgebra k G) E] :

                    Given E a MonoidAlgebra k G module, the natural isomorphism between MonoidAlgebra k G-linear map from the induced representation tensor to Eand MonoidAlgebra k (Subgroup.center G)-linear map from our θ.asModule seen as tensor product over MonoidAlgebra k (Subgroup;center G)) to E : $Hom_{k[G]}(k[G]⊗_{k[Z(G)]}θ, E) ≃ Hom_{k[H]}(θ,E)$.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      instance Frobenius_reciprocity.Finite_H (G : Type) [inst2 : Group G] [inst3 : Finite G] (H : Subgroup G) :
                      Finite H

                      Definition of a class function : given G a group, a class function is a function $f : G → G$ which is contant over the conjugacy classes of $G$.

                      Instances
                        noncomputable def Frobenius_reciprocity.Ind_conj_class_fun (G W : Type) [inst2 : Group G] [inst3 : Finite G] [inst4 : AddCommGroup W] (H : Subgroup G) (f : HW) :

                        Definition of the induced class function of a function

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          noncomputable instance Frobenius_reciprocity.character_as_conj_class_fun (k G : Type) [inst1 : Field k] [inst2 : Group G] (U : FDRep k G) :

                          The character of a representation seen as a conj_class_fun.

                          Equations
                          noncomputable instance Frobenius_reciprocity.tensor_addcommgroup_restrictscalars (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :
                          Equations
                          • One or more equations did not get rendered due to their size.
                          noncomputable instance Frobenius_reciprocity.tensor_module_restrictscalars (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) :
                          Equations
                          • One or more equations did not get rendered due to their size.
                          instance Frobenius_reciprocity.tensor_semisimple (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst3 : Finite G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) [h : NeZero (Fintype.card G)] :

                          tensor is a semisimple module.

                          @[reducible, inline]
                          abbrev Frobenius_reciprocity.induced_rep_tensor_direct_sum_component (k G W : Type) [inst1 : Field k] [inst2 : Group G] [inst4 : AddCommGroup W] [inst5 : Module k W] (θ : Representation k (↥(Subgroup.center G)) W) (g : (system_of_repr_center.set G)) :
                          Equations
                          Instances For

                            The induced representation Induced_rep_center.tensor k G W θ is isomorphic to a direct sum of induced_rep_tensor_direct_sum_component.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              Given the character of a representation θ of Subgroup.center G on k, the character of the induced representation tensor on G is the Ind_conj_class_fun of the character of θ.